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Abstract
Using a one-orbital model of hole-doped manganites, we show with the help of
the Holstein–Primakov transformation that finite Hund’s coupling is responsible
for the spin-wave softening in the ferromagnetic B-phase manganites. We
obtain an analytical result for the spin-wave spectrum for JH � t . In the limit
of infinite Hund’s coupling, the spectrum is the conventional nearest-neighbour
Heisenberg ferromagnetic spin-wave. The o(t/JH)-order correction is negative
and thus accounts for the softening near the zone boundary.

(Some figures in this article are in colour only in the electronic version)

The observations of large magnetoresistance (LMR) in Nd0.5Pb0.5MnO3, giant magneto-
resistance (GMR) and colossal magnetoresistance (CMR) in manganites (R1−x Ax MnO3, R
is a rare earth element and A a divalent alkaline-earth metal) a decade ago [1] have rekindled
much interest in these materials which have been known for half a century [2]. Upon doping,
the manganites undergo complicated transitions resulting in various magnetic, charge-ordering
and orbital-ordering phases, showing the interplay between relevant spin, charge and orbital
degrees of freedom. In particular, magnetism and electronic transport are clearly correlated. So
it is widely believed that knowledge of the spin dynamics can provide important information on
the underlying physics of CMR. Perring et al first measured the spin-waves in La0.7Pb0.3MnO3

for a broad range of q [3]. The magnon spectrum is well defined at low temperatures and can
be accounted for by the nearest-neighbour Heisenberg model. Subsequent measurements
for Pr0.63Sr0.37MnO3 and Nd0.7Sr0.3MnO3 [4], Nd0.7Ba0.3MnO3 [5] showed that the magnon
spectrum deviates from the Heisenberg model and becomes softened near the zone boundary.
So the behaviour seems a universal phenomenon of manganites.

As is well known, a number of interactions such as spin-orbital coupling, Hund’s coupling,
antiferromagnetic coupling between core spins, Coulomb interaction and dynamic Jahn–Teller
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effect coexist in manganites. These interactions are supposed to explain the existence of
different phases of doped manganites. To explain the spin-wave softening,various mechanisms
were proposed. The authors of [4] further showed that the experimental spectrum can be
reproduced reasonably well by an extended Heisenberg model. Furukawa [6] argued that the
softening seems to be explainable by a ferromagnetic Kondo lattice model with bandwidth
narrower than the Hund’s coupling. Solovyev et al [7] showed that the spin-wave behaviour
near the zone boundary has a purely magnetic spin origin, and neither the lattice deformation nor
the orbital ordering are required to account for the softening. Dai et al argued that the observed
magnon softening and broadening are due to strong magnetoelastic interactions [8]. And this
magnon–phonon coupling was later treated quantitatively in [9]. Using the ferromagnetic
Kondo lattice model and composite operator method, Mancini et al obtained the softening
spectrum [10]. Shannon et al constructed a theory of spin-wave excitations in the bilayer
manganite La1.2Sr1.8Mn2O7 based on the simplest double-exchange model and partly explained
the softening behaviour [11]. Krivenko et al showed that the scattering of spin excitations by
low-lying orbital modes may cause the magnon softening [12].

In this paper, we show that in the hole-doped manganites, the softening behaviour might
be of a purely electronic origin,i.e., a strong but finite Hund’s coupling between the eg electron
and the core spin. Since in the hole-doped manganite there is less than one eg electron per site
on average and the dx2−y2 orbital energy is significantly higher than that of d3z2−r2 [13] due to
Jahn–Teller splitting, a one-orbital description is a reasonable approximation. As in [14], we
adopt the model Hamiltonian

H = t
∑

〈i,j〉

∑

σ

c†
iσ cjσ − JH

∑

i

si · Si + JAF

∑

〈i,j〉
Si · Sj − µ

∑

iσ

c†
iσ ciσ + U

∑

i

ni↑ni↓ (1)

where t is the double exchange hopping, 〈i, j〉 are nearest sites, µ is the chemical potential for
the fermions, ciσ represents the eg electrons, JH is the Hund’s coupling between the eg spin
si = 1

2 c†
i σci and the core spin Si. JAF is the antiferromagnetic interaction between the core

spins, which is necessary to account for the G-phase parent (x = 1) manganites. The last
term is the Hubbard Coulomb interaction. We use the Holstein–Primakov transformation for
the core spins (S = 3/2); S+

i = (2S − a†
i ai)

1/2ai, S−
i = a†

i (2S − a†
i ai)

1/2, Sz
i = S − a†

i ai

and take the approximation (2S − a†
i ai)

1/2 � (2S − 〈a†
i ai〉)1/2. Homogeneity implies that

〈a†
i ai〉 = 〈a†a〉. Because we consider the low-temperature case, we can drop the magnon

quadratic term; hence the total Hamiltonian can be written as

H = t
∑

〈i,j〉

∑

σ

c†
iσ cjσ − µ

∑

iσ

c†
iσ ciσ + U

∑

i

ni↑ni↓ − 1
2 JH A

∑

i

(s+
i a†

i + s−
i ai)− JHS

∑

i

sz
i

+ A2 JAF

∑

〈i,j〉
aia

†
j + JAF Z N S2 − 2Z JAFS

∑

i

a†
i ai + JH

∑

i

sz
i a†

i ai, (2)

where A2 = 2S − 〈a†a〉, Z = 6 is the coordination number of the core spins. To use the
composite operator method, we consider the doublet B(i) = ( ai, s+

i )
T. The equation of

motion for B(i) is

i∂t B(i) = [B(i), H ] =
( − 1

2 JH As+
i + A2 JAF

∑
e ai+e − 2Z JAFSai + JHsz

i ai

t
∑

e(c
†
i↑ci+e↓ − c†

i+e↑ci↓)− JH Asz
i ai + JH Ss+

i − JHs+
i a†

i ai

)
. (3)

The composite operator method assumes that the right-hand side can be expressed as

[B(i), H ] =
∑

j

ε(i, j)B(j) (4)
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with ε(i, j) determined in the following way:

ε(i, j) =
∑

l

m(i, l)I −1(l, j) (5)

where I (i, j) = 〈[B(i), B†(j)]〉,m(i, j) = 〈[i∂t B(i), B†(j)]〉, and 〈 〉 represents the expectation
value. Thus ε(i, j) contains some parameters to be determined self-consistently. This approach
was proposed for the Hubbard model originally [14], and recent intensive studies [15] show
credible agreement with Monte Carlo method. In our case (again due to homogeneity,
〈sz

i 〉 = 〈sz〉)
I (i, j) = δij · diag(1, 2〈sz〉)
m11(i, j) = δij(JH〈sz〉 − 2Z S JAF) + A2 JAF

∑

e

δj,i+e

m12(i, j) = δij JH(−A〈sz〉 − 〈s−
i ai〉)

m22(i, j) = −t p1

∑

e

(δij − δj,i+e) + JH A〈s−
i ai〉 + 2JHS〈sz〉 − 2JH〈sz

i a†
i ai〉

where p1 = ∑
σ 〈c†

iσ ciσ 〉, p2 = 〈s−
i ai〉, p3 = 〈sz

i a†
i ai〉. In the k-space

m11(k) = (JH〈sz〉 − 2Z S JAF) + Z A2 JAFγk

m12(k) = JH(−A〈sz〉 − p2)

m22(k) = JH Ap2 − t Z p1(1 − γk) + 2JH S〈sz〉 − 2JH p3.

We assume that at T = 0 K, 〈a†a〉 = 0, which satisfies self-consistency using the resulting
retarded Green function and spectral theorem. Then the condition ω|k=0 = 0 requires that
p3 = − 1

2 p2(A + p2

〈sz 〉 ). So the ε-matrix is

ε11(k) = JH〈sz〉 − 2Z S JAF(1 − γk)

ε12(k) = − JH

2〈sz〉 (A〈sz〉 + p2)

ε21(k) = −JH(A〈sz〉 + p2)

ε22(k) = JH S − t Z p1

2〈sz〉 (1 − γk) + JH A
p2

〈sz〉 + JH
p2

2

2〈sz〉2

and the Green function is

D11(ω,k) = ω − (JH S − t Z p1

2〈sz 〉 (1 − γk) + JH A p2

〈sz 〉 + JH
p2

2
2〈sz 〉2 )

(ω − ω1(k))(ω − ω2(k))

D12(ω,k) = D21(k) = −JH(A〈sz〉 + p2)

(ω − ω1(k))(ω − ω2(k))

D22(ω,k) = 2〈sz〉[ω − (JH〈sz〉 − 2Z S JAF(1 − γk))]

(ω − ω1(k))(ω − ω2(k))
where ω1,2(k) are acoustical and optical branches of the spin excitations. Using

p2 = 1

N

∑

k

i

2π

∫
dω lim

η→0

D12(ω + iη,k) − D12(ω − iη,k)
eβω − 1

(6)

we have at T = 0 K, p2 = 0; therefore, p3 = 0. Accordingly, in this scheme, there are two
parameters left: 〈sz〉, p1. The acoustical magnon spectrum can be expanded as a Taylor series
which manifests the role of Hund’s coupling

ω1(k) = t
∞∑

n=0

(
t

JH

)n

an(1 − γk)
n+1 (7)
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where, as usual, γk = Z−1 ∑
e eik·e. The first few an are

a0 = −3(4S2 JAF
t + p1)

〈sz〉 + S

a1 = −9S(4S JAF
t 〈sz〉 − p1)

2

〈sz〉(〈sz〉 + S)3

a2 = 27(4S JAF
t 〈sz〉 − p1)

3S(S − 〈sz〉)
〈sz〉2(S + 〈sz〉)5

a3 = −81(S2 − 3S〈sz〉 + 〈sz〉2)(4S JAF
t 〈sz〉 − p1)

4S

〈sz〉3(S + 〈sz〉)7 .

In the small-k limit, ω � Dk2, D = −(4S2 JAF
t + p1)/(〈sz〉 + S). Note that the hopping energy

t p1 is negative, and when it overcomes the AF term,the resulting magnon stiffness D is positive.
Our numerical results show that this self-consistency is satisfied. Expression (7) suggests that
the softening comes from the finite JH. To fix the parameters 〈sz〉, we use the spectral theorem
and get 〈sz〉 = 1

2 (1 − x), where x is the dopant concentration. To fix p1, we need the fermion
sector. Using the notations in [10] for the fermion operatorψ(i) = ( ξ↑i, η↑i, ξ↓i, η↓i )

T, where
ξσ = (1 − n−σ )cσ , ησ = n−σ cσ are the Hubbard operators, we obtain the retarded Green
function for ψ in the large-U limit at zero temperature.

G R(ω,k) = diag

(
1

ω − E1(k)
, 0,

x

ω − E3(k)
,

1 − x

ω − E4(k)

)
(8)

(‘diag’ means diagonal matrix) with E1(k) = −µ + 6tγk − 1
2 S JH, E2(k) = U − µ + 6tu +

6tvγk, E3(k) = [24txγk −2µx + S JHx +12t p↓γk −12tγk +12t�↑]/(2x), E4(k) = [−2U x +
2µx − S JHx +2U +12t p↓γk + S JH −2µ+12t�↑]/[2(1−x)], where� is related to the nearest-
neighbour correlations of the Hubbard operators: �σ = 〈ξσ (i + e)ξ†

σ (i)〉 − 〈ησ (i + e)η†
σ (i)〉.

In this scenario, E1, E3 are partially filled and E2, E4 are empty. The relevant parameters
are µ,�↑, p↓. We have three equations to fix them: 1 − x = 2 − C F

11 − C F
22 − C F

33 − C F
44,

�↑ = C Fγ
11 , C F

11 = C F
33, where C F = 〈ψ(i)ψ†(i)〉,C Fγ = 〈ψ(i + e)ψ†(i)〉. We know that

C F
22 = 0 and C F

44 = 1 − x . Thus C F
11 = x = C F

33, so E3 is empty, i.e., only E1 is partially
filled. Hence only µ is relevant to our problem and it can be fixed by x = N−1 ∑

k θ(E1(k)),
where θ(x) is the usual step function. The hopping energy is

t p1 = −tC Fγ
11 = t

N

∑

k

θ(−E1(k))γk < 0. (9)

The other two parameters (�↑, p↓) can also be determined by t�↑ = −t p1 > 0,
24tx + 12t (p↓ − 1) = −2µx + S JHx + 12t�↑. Further analysis show that, for JH > 2.5t ,
the whole scheme is self-consistent. Figure 1 shows the two relevant fermion bands for
x = 0.301, t = 1, JH = 3.0 (in units of t).

It is seen from the magnon spectrum (7) that we can estimate the two model parameters
t and JH from measured data. Figure 2 shows the comparison between our calculated
result for the prescribed antiferromagnetic coupling JAF = 0.01 and the measured result
at T = 10 K for Pr0.63Sr0.37MnO3 in [4]. The solid curve in the left panel is the fit to a nearest-
neighbour Heisenberg model and gives a value at the zone boundary of about 34.2 meV. This
corresponds to the uppermost curve in the right panel. The comparison gives the hopping
energy t � 0.462 eV. The circles are the measured data, and they give the value at the zone
boundary of about 23 meV, corresponding to the point 0.05 in the right panel. This point
corresponds to JH � 3.2t � 1.48 eV. Note that the ratio JH/t is very close to the values of
interaction from a number of [16, 17]. It is worth noting that the nearest-neighbour Heisenberg
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Γ Γ

Figure 1. The bands for the Hubbard operators at T = 0 K.

π)

ω

Figure 2. The spin-wave spectrum along �X of the B-phase. The left panel (taken from [4]) is the
experimental result. The right panel is the calculated spin-wave spectrum (in units of t) at T = 0 K.

interaction alone cannot account for the Curie temperature. The fitting curve in the left panel
corresponds to the nearest-neighbour Heisenberg spectrum ω(k) � 51.3(1 − γk) meV. In the
mean field theory, the Curie temperature Tc corresponding to the spectrumωk = 2Z S∗ J (1−γk)

is kBTc = 2
3 J Z S∗(S∗ + 1) (here S∗ = S + 1

2 (1 − x) is the effective spin). This gives
T MF

C � 500 K. Taking into account that in three dimensions for a simple cubic lattice, the
real Curie temperature TC and T MF

C have the relation [18] TC = 0.75T MF
C , we get Tc � 375 K,

higher than the real value of 315 K. To conclude this paper, we present some discussions and
comments. In the derivation of the series expression of the magnon spectrum, we have used the
approximation (2S − a†

i ai)
1/2 � (2S − 〈a†

i ai〉)1/2 in the Holstein–Primakov transformation.
This can be satisfied at very low temperatures. Further, the quartic term JAF

∑
〈i,j〉 a†

i aia
†
j aj
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is neglected because JAF is very small and the magnon fluctuation at zero temperature is
negligible. The series expression (7) of the acoustic magnon dispersion shows alternating
behaviour; convergence is guaranteed when JHS > 3. The model parameters t, JH, JAF

and the hopping energy p1 can be estimated by fitting experimental data. There is a simple
physical picture for the deviation of the magnon spectrum from that of the Heisenberg model.
The interaction between core spins is induced by the hopping of eg-electrons and the dominant
term is linear in t . If the Hund’s coupling JH is infinite, only the dominant term plays the
role. The eg electron and core spin must add up to a total spin-2 to minimize the energy in
the B-phase. So the actual background for spin excitation is just that in the simple Heisenberg
model. But for finite JH, high orders of the mediated interaction between core spins make some
difference. Our result (7) agrees with the conclusions from the random phase approximation
[19], which provides an integral equation for the dispersion relation. The strength of the
induced ferromagnetic interaction is determined by the hopping energy of the conduction
fermions. For the approach presented to be self-consistent, the spin-wave stiffness must be
positive. The ferromagnetic order becomes unstable at a certain filling when the stiffness
vanishes. However, zone boundary spin-wave softening can be explained by the spin dynamics
in the Kondo lattice model, as shown in this paper. The origin of the behaviour is still an issue
of debate. Based on the observed proximity of phonon dispersion and magnon dispersion
and the anisotropic spin-wave broadening, Dai et al [8] argue that strong magnon–phonon
coupling is needed for a complete understanding of the low-temperature spin dynamics of
manganites. Quite recently, Endoh et al concluded [20] that the ferromagnetic magnons in
Sm0.55Sr0.45MnO3 are of orbital nature since the magnon dispersion shows anisotropy which
is mainly determined by the short-range correlation of the eg orbitals. They explained that
the anisotropic magnon dispersion is attributed to long-range magnetic interactions based on
fitting the data to a Heisenberg model with long-range interactions. We believe that if orbital
degrees of freedom are taken into account in our model, the resulting magnon spectrum will
be anisotropic, since orbital degrees of freedom bring anisotropy into the system. Finally, we
remark that as manganites are very complex systems, there might be multiple mechanisms
contributing to a single phenomenon. The analysis provided in this paper shows that Hund
coupling might be of primary importance.
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